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Abstract: This paper studies the identification problem for piecewise affine system, which is a special nonlinear 
system. As the difficulty in identifying piecewise affine system is to determine each separated region and each 
unknown parameter vector simultaneously, we propose a multi class classification process to determine each 
separated region. This multi class classification process is similar to the classical data clustering process, and 
the merit of our strategy is that the first order algorithm of convex optimization can be applied to achieve this 
classification process. Furthermore to relax the strict probabilistic description on external noise in identifying 
each unknown parameter vector, zonotope parameter identification algorithm is proposed to computes a set that 
contains the parameter vector, consistent with the measured output and the given bound of the noise. To 
guarantee our derived zonotope not growing unbounded with iterations, a sufficient condition for th is 
requirement to hold may be formulated as one linear matrix inequality. Finally a numerical example confirms 
our theoretical results 
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1.  Introduction 

Piecewise affine system considered in this paper is one 
of hybrid dynamical systems, as piec ewise affine 
system represents sw itching dynamics among a 
collection of linear differential or difference equations 
with state space being partitioned by a finite number 
of linear hyperplanes. Hybrid dynamical systems are a 
class of complex systems that involve interacting 
discrete event and continuous variable dynamics. They 
are important in applications in embedded systems, 
cyber physical systems, robotics, manufacturing 
systems, traffic m anagement, biomolecular networks, 
and have recently been at the center of intense 
research activity in the control theory, computer aided 
verification, and artificial intelligence communities. 
But in the control theory when t o control a sy stem, 
one needs to know at l east something about how it 
behaviors and reacts to dif ferent actions taken on it.  
Hence we need a model of the system. A system can 
informally be defined as an entity which interacts with 
the rest of the world through more or less well defined 
input and output data. A model is then an approximate 
description of the system, and an ideal model may be 
simple, accurate and general. This approximate 

description of the system can be constructed by system 
identification strategy, as the goal of sy stem 
identification is to build a mathematical model of a 
dynamic system based on some initial information 
about the system and the measurement data collected 
from the system. According to (Ljung Lennart, 1999), 
the process of sy stem identification consists of 
designing and conducting the identification 
experiment in order  to collect the measurement data, 
selecting the structure of the model and specifying the 
parameters to be identified and eventually fitting the 
model parameters to the obtained data. Finally the 
quality of the obtained model is eva luated through 
model validation process. Generally system 
identification is an iterative process and if the quality 
of the obtained model is not satisfactory, some or al l 
of the listed phases can be repeated in order to obtain 
one satisfied model for that considered system. 
Because of our complex world, all phenomenon are 
described as nonlinear systems. But nonlinear systems 
can not be convenient for other applications such as 
controller design, filter and prediction etc. So duri ng 
system identification procedure, most common models 
are linear difference equation descriptions, such as 
ARX and A RMAX models, as well as linear state 
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space models. When linear models are not sufficient 
for describing accurately the dynam ics of a syste m, 
nonlinear identification can be em ployed. A large 
number of n onlinear model structures have been 
constructed to investigate their properties, see (S Boyd, 
2004), where some real t ime fast convex algorithms 
are proposed to identify model parameters. Many tools 
for identification, as well as for co ntrol, stability 
analysis, have emerged in recent years. To be able to 
use these proposed tools, a mathematical model of the 
system is needed. 
Identification of hybrid systems (for e xample, 
piecewise affine systems) is an area that is related to 
many other research fields within nonlinear system 
identification, as such hybrid systems are sufficiently 
expressive to model a large number of p hysical 
process, and can approximate nonlinear dynamics with 
arbitrary accuracy. In addition, given the equivalence 
between piecewise affine systems and several classes 
of hybrid systems (R Pintelon, 2001), piecewise affine 
system identification techniques can be used to obtain 
hybrid models. The i dentification of piecewise affine 
system is a c hallenging problem, as it involves the 
estimation of both the parameters of the affine 
sub-models, and the coefficients of the hyper-planes 
defining the partition of the state-input set. This issue 
clearly underlies a class ification problem such that 
each data point corresponds to one sub-model. In 
particular, one can find several different approaches 
which are applicable, or r elated to piecewise affine 
system identification problem. Some examples of 
approaches for piec ewise affine systems are neural 
networks with piecewise affine perceptions. In (J Roll, 
2004), mixed integer programming is u sed to solve 
piecewise affine system identification problem. As the 
number of integer variables increases with the number 
of training samples, mixed integer programming is 
limited to problems with a sm all number of 
observations. To be able to reconstruct a po ssible 
discontinuous piecewise affine map with a 
multi-dimensional domain, Giancarlo F Trecate (2013) 
proposes to exploit the combined use of clustering, 
linear identification, and pattern recognition 
techniques, and allows to identify both the affine 

sub-models and the polyhedral partition of the domain. 
In (A Lj Jouloski, 2013)the sub-model parameters are 
described through probability density functions, which 
are iteratively updated through particle filtering 
algorithms. The sum of norms regularization strategy 
in (Henrik Ohlsson, 2013) can be computationally 
heavy in case of appropriate step size. Piecewise affine 
system identification problem amounts to le arning 
from a set of training data and the parameters defining 
each affine sub-model (Fabien Lauer, 2011). This 
piecewise affine system identification problem is an 
NP hard problem in general, see (Fabien Lauer, 2015, 
2016), for a detailed explanation on the complexity of 
piecewise affine system identification. For the sake of 
simplicity, sparse property is i mposed in piecewise 
affine systems (Laurent Ba ko, 2011), then the sparse 
optimization can greatly improve computational 
efficiency. The strengths of piecewise affine system 
identification problem of (Valentina Breschi, 2016) are 
the computational efficiency and the ability to be run 
both in a  batch and in a recursive way, where the 
combined use of recursive multiple least squares and 
linear multi-category discrimination is chosen for 
computing a solution of unconstrained optimization 
problems. When the identification error in piecewise 
affine system is bounded by a quan tity, a three stage 
procedure of a bounded error approach for parametric 
identification of p iecewise affine autoregressive 
exogenous models is proposed in (Alberto Bemporad, 
2005). But the performance of that bounded error 
approach is dependent of noise, overestimated model 
orders and classification accuracy greatly. The 
conversion of pie cewise affine models from state 
space input-output form was a ddressed by deriving 
necessary and suf ficiently conditions for a given 
piecewise affine state space model to admit equivalent 
representation (Simone Paoletti, 2010). From modern 
control theory, this state space input-output form can 
not guaranteed to be a minimal realization, so 
piecewise affine models are widely used in nonlinear 
system identification or control. A convex relaxation, 
based on L1 regulation is proposed in (Laurent Bako, 
2011) to approximate the underlying combinatorial 
problem appearing form piecewise affine regression. 
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The statistical clustering technique in (Nakada H, 
2005) first computes the parameters of the affine local 
models, then partition of the regressor space. The 
greedy algorithm of (Sim one Paoletti, 2008) to 
partition in feasible sets of linear inequalities can be 
computationally heavy in case of large training sets. A 
main limitation of a bove approach is that the 
polyhedral partition of the regressor space is given by 
Voronio diagram, which wi ll limit flexible capability 
(Alberto Bemporad, 2000). The problem of finding a 
lower complexity estimation of piecewise affine 
models form noise corrupted input-output data is dealt 
with in (Giuseppe C Calafiore, 2017), where an 
identification criterion formed by the average of a 
standard prediction error cost is combined with an L1 
regularization term to prom ote sparse solu tion (Xin 
Xu, 2017). T he piecewise linear Hammerstein model 
can be identified in the presence of a special excitation 
signal in (Gregor Dolanc, 2005), where it is  
convenient for the description of the processed with 
highly nonlinear or disc ontinuous memory less static 
functions. Naoko Miyashita (2007) employs 
identification method using pseudo random binary 
sequences input for decoupling the identification of 
nonlinear static block with that of pie cewise affine 
dynamic block. New iterative algorithms to identify 
Hammerstein system with piecewise linear 
nonlinearities are proposed in (Yun Lin, 2006), further 
that normalized iterative method produces convergent 
result with smooth nonlinear part a nd finite impulse 
linear part. A new form  of the Ham merstein model 
with modified parameterization, which will eliminate 
the main practical limitations, is introduced in (Gregor 
Dolanc, 2013), a parameter estimation algorithm and a 
novel pole placement controller are presented to tune 
the identified model. By means of a s parse 
overparameterization, the identification of nonlinear 
systems using piecewise linear models is turned into a 
convex optimization problem in [Per  Mattsson,2016], 
where a recursive likelihood based on methodology is 
proposed to penalize model complexity. 
As our considered piecewise affine system is one  
popular modeling framework for hybrid systems 
proposed in control theo ry, furthermore piecewise 

affine system can be seen as a special case of switched 
systems with linear dynamics in ea ch mode and 
mutual exclusive partitions of the st ate space. Based 
on above descriptions on piecewise affine system, in 
this paper we continue to s tudy the detailed 
identification strategy for piecewise affine system. It is 
well known that in such piecewise affine system, the 
space is partitioned into many separate regions and a 
local linear form is used for each separate region. So 
the first step in identifying piecewise affine system is 
to determine these separate regions. After the separate 
regions are given, the second identification problem is 
reduced to identify the linear submodels for each 
region. To deal with above mentioned steps, we 
reformulate the problem of de termining the separate 
regions as a multi class classification problem, which 
can be solved by classical first order algorithm of 
convex optimization theory, such as m irror descent 
algorithm or Nesterov’s optimal algorithm. As a multi 
class classification problem coincides with a data 
clustering process into the separate regions. When to 
identify the unknown parameter in each separate 
region, many classical identification algorithms can be 
used directly here, for example, least squares 
algorithm, maximal likelihood algorithm and Bayesian 
algorithm, etc. B ut all the classical identification 
algorithms hold in case that the considered noise may 
be a zero mean random signal. T his condition 
corresponds to the classical probabilistic description 
on noise. To relax this strict probabilistic description 
on noise, we in vestigate the z onotope parameter 
identification algorithm in the  presence of bounded 
noise. This bounded noise is considered in set 
membership identification field widely, and it is a new 
deterministic identification algorithm. The zonotope 
parameter identification algorithm computes a set that 
contains the parameters consistent with the measured 
output and the given bound of th e disturbance. To 
guarantee our derived zonotope not growing 
unbounded with iterations, some contracting 
properties can be imposed. In this work, a sufficient 
condition for these contracting properties to hold may 
be formulated as on e linear matrix inequality. By 
solving one optimization problem with li near matrix 
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inequality constraint, one approximate feasible 
solution set is obtained to contain the parameters. 
The rest of the paper is organized as follows. In 
section 2, the problem setting and the piecewise affine 
system are presente d. In section 3, a  multi class 
classification problem based on the first order 
algorithm of convex optimization theory, which can be 
used to determine the separate regions, is introduced. 
In section 4, The zonotope parameter identification 
algorithm is proposed to identify the unknown 
parameters in the presence of bounded noise for each 
separate region. In section 5, a very simple numerical 
example is used to illustrate the proposed algorithm. 
Finally, conclusions and comments about future 
research are presented in section 6. 

2.  Piecewise affine system 

Consider an affine model as follows. 

    
1 1

( ) ( )
a bn n

i j
i j

y t a y t i b u t i e t
 

                 (1) 

where  u t and  y t are input and output 
respectively,  ia and  ib are the unknown model 
parameters,  e t is an external noise. Two orders 

an and bn are priori known. This affine model can be 
rewritten as a linear regression form, after a regression 
vector  t is introduced. 

         
     

1 1
T

a b

T

t y t y t n u t u t n

y t t e t



 

          
 

                 

(2) 
where the unknown parameter vector is stacked as. 

 1 1a b

T

n na a b b                     (3) 

For large enough orders an and bn , that affine model 
can be a pproximated any linear system. Although 
affine model (1) is beneficial for local approximation 
of some nonlinear systems, but it can no t capture any 
nonlinear properties, so in order to introduce affine 
model into nonlinear system, piecewise affine system 
is obtained. It means that the parameter vector   is 
dependent of the region in the regression space, where 
regression vector  t  lies. Then the regression 
space is divided into n  separate regions 1 nR R , our 
considered piecewise affine system can be defined as. 

        T
i iy t t e t if t R                   (4) 

where the parameter vector i  depends on its 
separate region iR . The problem of identifying 
piecewise affine system is reform ulated as that, after 
output and input     ,u t y t are collected, how to 
identify those unknown parameter vectors  1

n

i i



? Due 

to the fact that regression vector  t is constituted by 
output and input     ,u t y t , so th e first step is t o 
judge which region the regression vector belongs to. 
 

3.  Multi-class classification process 

As there exist  n  separate regions 1 nR R , the 
problem of d etermining which region the regression 
vector lies is in co njunction with a multi class 
classification process. We observe N data 
points    1

N

t
z t


. 

    

   

( )

( ) ( 1) ( ) 1

T

T

a b

z t y t t

y t y t y t n u t u t n

   

         

          (5) 
where N denotes the number of observed data points, 
and each data point  z t belongs to one of 
n non-overlapping classes, along with labels 

n
t R  which are basic orths in nR ; the index of the 

only nonzero entry in t is the number of class t o 
which  z t belongs. We want to build a m ulti class 
analogy of the standard linear classifier as follows: a 
multi class classifier is specified by a matrix A and a 
vector na R . Given a data point  z t , we compute the 
n dimensional vector  Az t a , identify its maximal 
component, and treat the index of this component as 
our guess for the serial number of the class to which 
 z t belongs. 

Let 1t t   be the c omponent of t . Given a data 
point z and the corresponding label , let us set. 

     , , ,h h A a z Az a Az a                 (6) 

If *i is the index of the only nonzero entry in  , then 
the *i th entry in h is zero. And h is nonpositive if 
and only if the classifier, given by ,A a and evaluated 
at z , recovers the class *i of z with margin 1, i.e. we 
have. 

   
*

*1
j i

Az a Az a for j i                  (7) 

On the other hand if the classifier fails to classify z  
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correctly, that is.  

   
*

*j i
Az a Az a for some j i             (8) 

Then the maximal entry in h is  1. So we set. 

   
1

, , , max , , ,
jj n

A a z h A a z  
 

                   (9) 

We get a nonnegative function which vanishes for the 
pairs  ,z  , which are quite reliably-with margin 
 1-classified by  ,A a , and is  1 for the pairs 

 ,z  with z not classified correctly. Thus the 
function is that. 

    , , , ,H A a E A a z                     (10) 

The expectation being taken over the distribution of 
the pairs  ,z  , is an up per bound on the probability 
for classifier  ,A a  to misclassify a data point. What 
we would do is t o minimize  ,H A a over A and a . 
To do this, since  ,H A a is not observable, we 
replace the expectation by its empirical counterpart. 

    
1

1, , , ,
N

N t
t

H A a A a z t
N

 


                (11) 

For the sa ke of simplicity, imposing an upper bound 
on some norm A of A , one optimization problem is 
obtained. 

 
    

, 1

1min max

1

N

t t iA a i n
t

Az t a Az t a
N

subject to A

 


     



    (12) 

A natural choice of the norm A is the maximum of 
the 

2
A norm. The cl assical first order algorithm of 

convex optimization theory can be used to solve that 
optimization problem (12), suc h as mirror descent 
algorithm or Nesterov’s optimal algorithm. Once 
optimization variables A and a are obtained, then the 
linear classifier  Az t a is get. From above multi 
class classification process, we see that once one data 
point is collected, we ca n cluster it w ith a linear 
classifier. So based on above linear classifier, all data 
points can be clustered together, then those data points 
clustering together as one class can be used in the 
second identification problem for unknown parameter. 
 
 

4.  Zonotope parameter identification 

algorithm 

After all collected data points are clustered as 
n classes, then those data points belonging to one 
same class can be used to identify one un known 
parameter. Here we only  rewrite the  following 
piecewise affine system in the i th separate region. 

       T
i iy t t e t t R                  (13) 

The mission of this section is to identify the unknown 
parameter vector i  in case of unknown but bounded 
noise. It is well known that in equation (13), there are 
two ways to represent uncertainties: the statistical 
approach and the deterministic approach. In the 
statistical approach, the uncertainty or d isturbance is 
modeled by a random process with a known statistical 
property, when estimates of the probability 
distributing of the uncertainty or d isturbance are 
available. But in many applications, there are 
situations when then probability distributing of the 
uncertainty or disturbance is not known and only 
bound of the uncertain domain can be fixed, then the 
probabilistic assumptions on the uncertainty are no 
longer valid. In the deterministic approach, 
disturbance is assumed to belong to a set. D ifferent 
families of c lassical sets are used depending on their 
properties. The main advantage of the deterministic 
approach is that disturbance is assumed to be unknown 
but bounded and this is often simpler to verify than the 
criterion on the probability disturbance. This is t he 
main reason why we choose the deterministic 
approach to model the disturbance affecting the 
system behavior. Based on this rem ark, one of t he 
deterministic approach-zonotope parameter 
identification algorithms has been chosen in this 
section to id entify two unknown parameter vector i . 
This identification algorithm computes a set that 
contains the parameters consistent with the measured 
output and the given bound of the disturbance. This set 
is represented by a zonotope, that is an affine map of 
an unitary hypercube. 
Observing equation (13) again, as  e t represents the 
considered noise, this noise belongs to a bounded set, 
i.e. 
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   :e t e R e                           (14) 

where R   is an upper bound and  e t is unknown, 
but has known bound. 
From set membership identification theory (J M Bravo 
& T Alamo& E F Ca macho,2006), given a set  of 
measured outputs, the feasible solution set is defined 
as the set of parameters that are c onsistent with 
measured outputs and the given bounds. More 
precisely, the following definitions are g iven through 
this section. 
Definition 1 (Feasible Solution Set):  
Suppose that the pairs     , , 1, 2y t t t N   are 
given. The vector i  is said to belong to the feasible 
solution set if there exists i such that.. 

    , 1, 2T
iy t t t N                      (15) 

Definition 2 (Information set):  
Given the pairs     , , 1,2y t t t N   at time 
instant t , the information set tI is a set of all feasible 
parameters , t hat are consistent with the model (13), 
the measured output  y t and the known bound at 
time instant t , namely: 

    :a bn n T
t i iI R y t t                (16) 

Geometrically tI  represents a strip, that is consisted 
with     , , 1, 2y t t t N   . Feasible solution set at 
time instant 1t  , denoted as 1tFSS  , can be 
computed exactly from the one c orresponding to time 
instant t  by the following recursion. 

1t t tFSS FSS I                            (17) 
It is difficult to compute the feasible solution set (J M 
Bravo & A  Suarez & M V asallo,2016), so an outer 
bound of the feasible solution set can be used. 
Definition 3 (Approximated Feasible Solution Set): 
An approximated feasible solution set denoted AFSS,  
is a set that satisfies that FSS. The intersection 

t tFSS I  is approximated by m eans of the  
intersection between a zonotope and a strip at tim e 
instant t . 
Definition 4 ( Zonotope of order m ):  
Given a vector a bn np R  and a matrix  a bn n mH R   , a 
zonotope of order m is a set of 

1 a bn n n  dimensional vectors defined by (J M Bravo 
T Alamo M Vasallo,2017). 

  1 :n m
i iZ R p HB                    (18) 

where mHB  is a linear projection of mB  into  
1 a bn n n  dimensional parameter space, mB is a unit 

hypercube of order m , and   denotes Miniowski 
sum. 
Using the approximated feasible solution set on the 
intersection (17), then 

1 1t t t tFSS FSS I AFSS                 (19) 
If in equation (41) feasible solution set tFSS is 
denoted by a zonotope and information set tI  is a 
strip, then a family of zonotopes which over bound the 
intersection between a zonotope and a strip, are 
derived as the following Theorem 1. 
Theorem 1:  
Suppose FSS at time instant t , denoted as a zonotope 

 1ˆˆ nr
t t tFSS p H B R                       (20) 

The information set or a strip 

    :a bn n T
t i iI R y t t                  (21) 

and a scalar  , define 

 
      
    

ˆ ˆ ˆ

ˆ ˆ

T
t t t

t t

p p y t t p

H I t H

  

  

   


    
              (22) 

Thus we have  

   
1 1

1ˆˆ
t t t t

r
t t

FSS FSS I AFSS

p H B 
 



 

 


           (23) 

where I  is an identity matrix. 
In (Marko Tanaskovic & Lerenzo Fagiano & Carlo 
Novara,2017), the optimization-based method is used 
to choose a scalar R  , through minimizing the 
volume of a zonotope. Now the minimization of the 
P-radius of a  zonotope is applied, as the P-radius 
criterion allows to guara ntee the non-incre asing 
property of the guaranteed zonotope at each time 
instant. It tells us that to guarantee the approximated 
feasible solution set not growing unbounded with 
iteration steps, the following inequality relation 
between two neighboring zonotope is imposed. 

2
1t tl l                                (24) 

where  0,1   is a contraction rate, and tl  is the 
P-radius of zonotope parameter estimation set at time 
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instant t , which is defined by. 

 2ˆmax
i t

t i t PFSS
l p





                 (25) 

where P  is an 1n  -dimensional positive definite 
matrix. 
Substituting the definition (25) into the inequality 
relation (24), we have 

    1 1

2 2 2
1 2ˆ

ˆ ˆˆmax max max
r rt t

P Pz B z B B
H z H z


  

 
  

    (26) 

Expanding equation (26) to obtain 

     2 2
1 1

ˆ ˆ ˆ ˆˆ ˆ 0T T
t t t tz H PH z z H PH z            (27) 

Due to the recursion of  ˆ
tH   in equation (22), we 

compute. 

 
    

  
1

ˆ ˆˆt tH z I t H z

I t z

  

 
  

  
           (28) 

where we set 

 
 

1
ˆ

ˆ
t

T

z H z

z z 


 



              (29) 

Applying equation (28) in (27), we get. 

     
2 2 0

TT

T

z I t P I t z

z Pz

   

  

        
  

    (30) 

Formulation above inequality as that. 

 
        

   2 2 2 2 2 0

T TT T

T

z I t P I t z z I t P

P I t z z Pz

   

       

   

     

               (31) 
A sufficient condition for equation (31) to hold can be 
rewritten as one linear matrix inequality. 

        
    2 2

0
1

,

T

T T

z

I t P I t P I t P z

P I t

z



    

   



 
 
 
              


        (32) 

Using the definition of positive definite matrix allows 
us to rewrite as that. 

 

        
    2 2

0
1

0

T T
I t P I t P I t P

P I t

z

    

   



    
  
   
 

  
 

         (33) 

The linear matrix inequality in (33) defines the 
feasible solution for scalar  , i.e.   can be computed 
by solving the following Eigenvalue problem. 

  

        
    

,

2

2

2 2

max

1
, 0

max

0
1

B

T T

P
subject to I

I t P I t P I t P

P I t

 






 



    

   




 

    
  
   

            (34) 
The above Eigenvalue problem can be solved by using 
convex optimization algorithm, then based on this 
optimal scalar R  , a zonotopic outer approximation 
of the intersection between a zo notope and a st rip is 
obtained by using matrix inequality optimization 
strategy. Finally our zonotope parameter identification 
algorithm is formulated as follows. 
Algorithm 1: Zonotope Parameter Identification 

Algorithm 
(1) Obtain measured input-output data and construct 

regressor vector  t ; 

(2) Build a strip that bounds the consistent parameters, 
i.e. information set; 

    :a bn n T
t i iI R y t t           

(3) Construct a zon otope 1ˆˆ nr
t t tFSS p H B R   to 

denote the feasible solution set at time instant t ; 
(4) Compute the intersection between a zonotope and 

a strip at time instant t  and obtain a n ew 
zonotope 

    1
1 1

ˆˆ r
t t t t t tFSS FSS I AFSS p H B  
      

to denote the approximated feasible solution set at 
time instant 1t  ; 

(5) Choose one optimal scalar   through solving one 
matrix inequality optimization strategy; 

(6) Repeat the above steps and terminate the recursive 
algorithm when the P-radius tl is zero, then denote 

*p̂  as the vector in the last zonotope , so t he 
unknown parameter vector i  is given by 

*ˆ ˆi p                                   (35) 
It is si milar to ap plying above six st eps to id entify 
another unknown parameter vector. 
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5.  Numerical example 

In this sect ion, one simple piecewise affine system is 
used to prove our strategies, such as two cl ass 
classification process and zonotope parameter 
identification algorithm. This simple piecewise affine 
system is given as follows. 

 
     
     

1

2

0

0

T

T

t e t if t
y t

t e t if t

  

  

   
 

           (36) 

where regression vector  t and two unknown 
parameter vectors  1 2,  are described as that. 

     
 
 

1

2

7 2

2 0.5

T

T

T

t y t u t





     
 




                    (37) 

we exert the input signal  u t  in piecewise affine 
system. The actual input signal is given in Figure.1 (a), 
but this actual input signal is not suited for simulation. 
So we use its approximated input signal to replace the 
actual input signal in our simulation, where the 
approximated input signal is similar to sinusoidal 
signal-Figure.1 (b). Then we measure the output signal 
 y t by using some measuring devices, the observed 

output signal is plotted in Figure.2. 
Firstly our mentioned multi class classification process 
is reduced to two class classification problem in this 
simulation. Given one data point     ,y t t , we need 
to determine which region this data point belongs to. 
Here the number of given data points is 500N  , i.e. 
these 500 data po ints belong to one of two classes. 
The clustering process can be seen Figure.3, where 
data points are clustering around two ellipsoids. As 
three points deviat e away these two ellipsoids, then 
they are regarded as outliers and we delete them. From 
Figure.3, we see that a ll data points are classified 
correctly, except three data points. 
Secondly in the presence of bo unded noise, choose 

upper bound   0.5e t   , and all in itial parameter 

values 0
0

1ˆ I
p

  . Zonotope parameter identification 

algorithm is applied to identify those two unknown 
parameter vectors. Applying above six steps to 

construct a sequence of candidate zonotopes, and after 
20 iterations, these candidate zonotopes are given in 
Figure.4 and Figure.5.  
In Figure.4, the black star denotes the optimal 
parameter vector as  1 7 2 T  , and a sequence of 
candidate zonotopes generated by zonotope parameter 
identification algorithm include  1 7 2 T  as their 
interior point. as these candidate zonotopes have 
decreasing volumes with it erations, i.e. certain 
contracting properties hold. Generally the o ther 
unknown parameter vector corresponding to 

 1 7 2 T   can be c hosen as the center of the 
smallest zonotope. Further the black star is the optimal 
parameter vector as  2 2 0.5 T  in Figure.5, and 
results are similar to them in Figure.4 
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(b) Approximated input signal 

Figure.1: The applied input signal 
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Figure.2: The observed output signal 

Figure.3: The observed output signal 

Figure 4: The observed output signal 

 
Figure.5: The observed output signal 

 

6. Conclusion 

In this paper, we study the problem of id entifying 
piecewise affine system, which combines the linear 
and nonlinear properties. As it is a n onlinear system 
that is piecewise affine in the regression space, so the 
parameter vector depends on the region in the 
regression space. The separate regions are determined 
as a multi class classification problem, which is solved 
by classical first order algorithm of convex 
optimization theory. In the presence of unknown but 
bounded noise, zonotope parameter identification 
algorithm is proposed to identify unknown parameter 
vector in each separated region. Generally finite 
sample property of zonotope parameter identification 
algorithm is our ongoing work. 
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